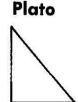
Decide if the triangle made up of sides a, b, and c below is right, acute, or obtuse. Write your answer on the blank provided.

8		Side a	Side b	Side c	٠
33	_	5	12	13	
41		7	20	23	
67		9	40	41	
19		4	5	6	
5		1.5	4	5.2	
34		. 11	11√3	22	
12		19	20	28	
56		8	15	1 <i>7</i>	
6		. 5	8	9	260
4		6	8	10	
37	* *	5	5√3	8	
8	8	7√2	7√2	14	
9		10	16	20	
15		3.6	4.6	5.6	9
25		10	10.5	14.5	
Place the digits to on each blank).	the LEFT of each RIG	GHT triangle in o	rder on the bla	nks below (one d	digit
		and	are the sides of a right ars ago. Can you test these sides to see		
if the Babylonians w		nan 2000 years o	ago. Can you te	st tnese sides to	see

NO. HS502 @ COPYRIGHT, 1983, HAYES SCHOOL PUBLISHING CO., INC., WILKINSBURG, PA.

Many mathematicians over the centuries have developed formulas for generating right triangles.

Pythagoras: n,
$$\frac{n^2-1}{2}$$
, $\frac{n^2+1}{2}$


Plato:
$$\frac{a^2}{4} - 1$$
, a, $\frac{a^2}{4} + 1$

Fuclid:
$$\frac{x-y}{2}$$
, \sqrt{xy} , $\frac{x+y}{2}$

Masères:
$$2pq$$
, $p^2 - q^2$, $p^2 + q^2$

Label the sides of each triangle according to the rules given above. Be sure the hypotenuse is labeled correctly — remember, it's the longest side.

Pythagoras

- 1. Find the sides of a Pythagoras triangle if n = 3.
- 2. Find the sides of a Plato triangle if a = 4.
- 3. Find the sides of a Euclid triangle if x = 3, y = 1.
- 4. Find the sides of a Masères triangle if p = 4, q = 1.
- 5. Find the sides of a Pythagoras triangle if n = 2.
- 6. Why might you want to restrict n to odd positive integers in Pythagoras's formula?
- 7. Find the sides of a Plato triangle if a = 7.
- 8. Why might you want to restrict values of a to even positive integers greater than 2?
- 9. Find the sides of a Euclid triangle if x = 10, y = 4.
- 10. Find the sides of a Euclid triangle if x = 5, y = 2.
- 11. Why might you want to restrict x and y to either even or odd numbers?
- 12. Find the sides of a Masères triangle with p = 2.6, q = 1.5.
- 13. What restriction would you impose on values for p and q?

Extra: Prove the right triangle identity $a^2 + b^2 = c^2$ using the formulas given by Pythagoras, Plato, Euclid, and Masères.